A CESTA

Course Code	Course Name	L	т	Р	С
BST 130B	LIFE SCIENCES	2	1	0	3

Life sciences have been introduced into curriculum of all engineering branches. Students in engineering programs should be aware of fundamentals of biology to relate to their field. This course is a critical application area for engineering analysis and design, emphasizing concepts, technology, and the utilization of living things. Further it is important to know how living things work and act.

Course Objectives

- Introduce the molecular basis of life.
- Provide the basis for classification of living organisms.
- Describe the transfer of genetic information.
- Introduce the techniques used for modification of living organisms.
- Describe the applications of biomaterials

UNIT I

Introduction to Biology: Comparison of eye and camera, flying bird and aircraft, biological observations and major discoveries - genera, species and strains, and Classification of living organisms: Cellularity, Ultrastructure, carbon and energy sources, excretion, habitat and molecular taxonomy.

Learning Outcomes

After completing this unit, the student will be able to

- Summarize the basis of life (L2).
- Distinguish prokaryotes from eukaryotes (L4).
- Compare biological organisms and man-made systems (L2).
- Classify organisms (L2).

UNIT II

Water, Biomolecules: sugars, starch and cellulose, Amino acids and proteins, lipids, Nucleotides and DNA/RNA, structure and functions of proteins and nucleic acids, haemoglobin, antibodies and enzymes, Industrial applications of enzymes, Fermentation and its industrial applications.

Learning Outcomes:

After completing this unit, the student will be able to

• outline the importance of water (L2).

10 L

12 L

- explain the relationship between monomeric units and polymeric units (L2).
- explain the relationship between the structure and function of proteins (L2).
- interpret the relationship between the structure and function of nucleic acids (L2).
- summarize the applications of enzymes in industry (L2).
- explain the applications of fermentation in industry (L2).

UNIT III

12 L

Bioenergetics, Respiration: Glycolysis and TCA cycle, Electron transport chain and oxidative phosphorylation, Mechanism of photosynthesis, Human physiology, neurons, synaptic and neuromuscular junctions.

Learning Outcomes:

After completing this unit, the student will be able to

- apply thermodynamic principles to biological systems (L3).
- explain the mechanism of respiration and photosynthesis (L2).
- summarize the principles of information transfer and processing in humans (L2).

UNIT IV

Mendel's laws, gene mapping, Mitosis and Meiosis, Epistasis, single gene disorders in humans, Genetic code, DNA replication, Transcription, Translation.

Learning Outcomes:

After completing this unit, the student will be able to

- define Mendel's laws (L1).
- demonstrate the mapping of genes (L2).
- explain interactions among genes and their significance (L2).
- differentiate the mitosis and meiosis (L4).
- explain the medical importance of gene disorders (L2).
- Identify DNA as a genetic material in the molecular basis of information transfer (L3).

UNIT V

10 L

Recombinant DNA Technology: recombinant vaccines, transgenic microbes, plants and animals, animal cloning, biosensors, biochips.

Learning Outcomes:

After completing this unit, the student will be able to

- outline the principles of recombinant DNA technology (L2).
- appreciate the potential of recombinant DNA technology (L2).
- summarize the use of biological materials for diagnostic devises (L2).

12 L

Lab Experiments (Virtual or Field Experiments)

1. Microscopy, Mendel's laws, mapping, interactions, - 4 lab experiments

2. Nitrogen cycle, Species interactions, Sterilization, Bacterial population growth, - 4 lab experiments

Textbook (s):

1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.

2. Arthur T Johnson, Biology for Engineers, CRC press, 2011.

Reference Books:

1. Alberts et.al., The molecular biology of the cell, 6/e, Garland Science, 2014.

2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

Course Outcomes

After studying the course, the student will be able to:

- explain catalytic properties of enzymes (L2).
- summarize application of enzymes and fermentation in industry (L2).
- identify DNA as a genetic material in the molecular basis of information transfer (L3).
- apply thermodynamic principles to biological systems. (L3)
- analyse biological processes at the reductionistic level (L4).
- appreciate the potential of recombinant DNA technology (L2).