CHINMAYA
 VISHWAVIDYAPEETH DEEMED TO BE UNIVERSITY
 worlo-class education bult on indian wisoon
 Course Name: Combinatorics, Statistics and Basic Probability Programme in which it is offered: B.Sc. B. Ed

Course Category: Core	Schedule of Offering: Odd
Course Credit Structure: $\mathbf{4}$	Course Code: PS 151
Total Number of Hours: 75	Contact Hours Per Week:5
Lecture:3	Tutorial:1
Practical:0	Medium of Instruction: English
Date of Revision:	Skill Focus: Employability
Short Name of the Course: CSP	The course is considered as a Minor/Elective/ in any other school: Not Applicable

Course Description

This course is offered as a Core Course for B.Sc. B. Ed (Mathematics) students. The students will learn about certain mathematical and statistical tools that are used in a business environment

Course Introduction

To enable the students to understand the basic concepts of combinatorics, statistics and probability, to obtain the skills and apply them in problem-solving and teaching (as part of assessment of learners).

Course Objective

1. To familiarize the students regarding the concepts and techniques in Combinatorics
2. To sensitize the students regarding the application of Statistics in solving real life problems.
3. To make the students aware about the business statistical methods
4. To develop the student's ability to deal with numerical and quantitative issues in business

Course Outcomes

At the end of the course student will be able to

1. Understands different types of Lattices.
2. Study concepts like permutation and combination, pigeon hole principle, Principle of inclusion and exclusion and solve real life problems based on them.
3. Analyse data using different types of charts and graphs.
4. Apply the concept of Probability and random variable in various problem situations.
5. Able to calculate probability and value of a random variable.

PO-CO Mapping

PO-CO Mapping Matrix

CO/PO Mapping	PO 1	PO 2	PO 3	PO 4
$\mathrm{CO1}$	X			

Combinatorics, Statistics and Basic Probability

CO 2		X		
CO 3		X		
$\mathrm{CO4}$		X		
$\mathrm{CO5}$		X		

Prerequisites

The course does not require any pre-requisites. It is offered to all the students of B.Sc. B.Ed(Mathematics).

Pedagogy

The course will be taught in theory-based mode through lectures. The course instructor will also give presentations to the students for better understanding of the concepts.

Suggested Reading:

1. C. L. Liu (1986), Elements of Discrete Mathematics, McGraw-Hill Education.
2. Kenneth H. Rosen (2002), Discrete Mathematics and its Applications, McGraw-Hill Education.
3. Alexander M. Mood and Others (1988), Introduction to the Theory of Statistics, McGraw Hill Education.
4. Charles M. Grinstead and Laurie Snell J. (1991), Introduction to Probability, Rhode Island, American Mathematical Society.
5. Gupta S.C and Kapur (2011), Fundamentals of Mathematical Statistics, Sultan Chand and Co, New Delhi.
6. Richard Serfozo (2003), Basic Probability Problems, London, Springer.
7. Robert V. Hogg and Allen T. Craig (1978), Introduction to Mathematical Statistics, McMillan Publishing Co.

Module Sessions

Module I: Lattices and Boolean Algebra

Partially ordered sets, Lattices, Complete lattices, Distributive lattices, Complements, Boolean Algebra, Boolean expressions, Application to switching circuits.

Readings:

1. C. L. Liu (1986), Elements of Discrete Mathematics, McGraw-Hill Education.
2. Kenneth H. Rosen (2002), Discrete Mathematics and its Applications, McGrawHill Education.

Activities:

a) Quiz
b) Assignment

Permutations and Combinations, Pigeon-hole principle, Principle of inclusion and exclusion. Solving real life problems based on them.

Reading:

1. Kenneth H. Rosen (2002), Discrete Mathematics and its Applications, McGraw-Hill Education.
2. Robert V. Hogg and Allen T. Craig (1978), Introduction to Mathematical Statistics, McMillan Publishing Co.

Activities:

a) Quiz
b) Assignment

Module III: Introduction to statistics

(25 Hours)

Introduction to statistics- Mean, Mode and Median of grouped and un-grouped data, Graphical representations - Pie Charts, Line Graphs, Bar Graphs, Histograms, frequency polygon. Measures of dispersion - Range, Mean deviation, Variance and Standard deviation. Analysis of frequency distribution.

Reading:

1. Charles M. Grinstead and Laurie Snell J. (1991), Introduction to Probability , Rhode Island, American Mathematical Society.
2. Gupta S.C and Kapur (2011), Fundamentals of Mathematical Statistics, Sultan Chand and Co, New Delhi.

Activities:

a) Quiz
b) Assignment

Random experiment, Concept of probability, Sample space, Events- different kinds Probability definitions - Mathematical or Classical or Statistical, Conditional probability, Independent events, Bayes' theorem

Random variable, Discrete and continuous random variables, Probability function, Probability density function, Distribution function. Mean Variance and standard deviation of a random variable.

Reading:

1. Charles M. Grinstead and Laurie Snell J. (1991), Introduction to Probability , Rhode Island, American Mathematical Society.
2. Gupta S.C and Kapur (2011), Fundamentals of Mathematical Statistics, Sultan Chand and Co, New Delhi.
3. Richard Serfozo (2003), Basic Probability Problems, London, Springer.

Activity:

a) Quiz
b) Assignment

Evaluation Pattern

Continuous Internal Assessment (CIA) Components	Component Type	Weightage Percentage	Total Marks	Tentative Dates	Course Outcome Mapping
	Mid-term Exam	$50 \% \text { Of }$ CIA Marks	30	$10^{\text {th }}$ week	1,2,3
	Quiz	25% of CIA Marks	15	Weekly	1,2
	Assignments	25% of CIA Marks	15	At the end of each module	1,2,3,4,5
	CIA Marks	$\begin{gathered} 100 \% \text { (To } \\ \text { be } \\ \text { converted } \\ \text { to } 60 \% \text {) } \end{gathered}$	60		
ESE		40\%	40	End of the Semester	1,2,3,4,5

